Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 246: 118153, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38191036

RESUMEN

The future of energy technology is significantly influenced by hydrogen (H2) energy. However, hydrogen energy production through water-splitting entirely depends on the catalyst's performance. Modifying the morphological structure and increasing the number of active sites by changing the metal composition are pivotal factors in enhancing the catalytic activity for the hydrogen evolution reaction (HER). In this context, we introduce the impact of metal-organic framework (MOF) strategies for decorating CoP petals onto α-Fe2O3 and FeCoP-NC (NC-nitrogen-doped carbon) nanoflowers. This method results in an excellent electrocatalyst for HER. The study demonstrated the influence of different MOF precursors, the impact of calcination temperatures, and the importance of composition percentages in Fe1-xCoxP-NC. As a result, FeCoP-NC shows excellent electrochemical performance potential (η) of 57 mV, a rapid kinetic Tafel value of 61 mV/dec, and remarkable electrochemical stability of around 2000 cycles and 20 h in stand potential. Additionally, the composite has numerous active surfaces at 4.7 mF/cm2 during the electrochemical reactions. This work concludes that MOF-assisted FeCoP-NC nanoflowers are an ideal electrocatalyst for HER in an alkaline medium.


Asunto(s)
Estructuras Metalorgánicas , Nanosferas , Carbono , Hidrógeno , Cinética
2.
Nanomaterials (Basel) ; 13(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37947677

RESUMEN

In this study, we created a series of N, S, and P-doped and co-doped carbon catalysts using a single graphene nanoribbon (GNR) matrix and thoroughly evaluated the impact of doping on ORR activity and selectivity in acidic, neutral, and alkaline conditions. The results obtained showed no significant changes in the GNR structure after the doping process, though changes were observed in the surface chemistry in view of the heteroatom insertion and oxygen depletion. Of all the dopants investigated, nitrogen (mainly in the form of pyrrolic-N and graphitic-N) was the most easily inserted and detected in the carbon matrix. The electrochemical analyses conducted showed that doping impacted the performance of the catalyst in ORR through changes in the chemical composition of the catalyst, as well as in the double-layer capacitance and electrochemically accessible surface area. In terms of selectivity, GNR doped with phosphorus and sulfur favored the 2e- ORR pathway, while nitrogen favored the 4e- ORR pathway. These findings can provide useful insights into the design of more efficient and versatile catalytic materials for ORR in different electrolyte solutions, based on functionalized carbon.

4.
ACS Appl Mater Interfaces ; 14(5): 6777-6793, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35080174

RESUMEN

Electrocatalytic production of H2O2 via a two-electron oxygen reduction reaction (ORR-2e-) is regarded as a highly promising decentralized and environmentally friendly mechanism for the production of this important chemical commodity. However, the underlying challenges related to the development of catalytic materials that contain zero or low content of noble metals and that are relatively more active, selective, and resistant for long-term use have become a huge obstacle for the electroproduction of H2O2 on commercial and industrial scales. The present study reports the synthesis and characterization of low metal-loaded (≤6.4 wt %) catalysts and their efficiency in H2O2 electroproduction. The catalysts were constructed using gold palladium molybdenum oxide (AuPdMoOx) and palladium molybdenum oxide (PdMoOx) nanoparticles supported on graphene nanoribbons. Based on the application of a rotating ring-disk electrode, we conducted a thorough comparative analysis of the electrocatalytic performance of the catalysts in the ORR under acidic and alkaline media. The proposed catalysts exhibited high catalytic activity (ca. 0.08 mA gnoble metal-1 in an acidic medium and ca. 6.6 mA gnoble metal-1 in an alkaline medium), good selectivity (over 80%), and improved long-term stability toward ORR-2e-. The results obtained showed that the enhanced ORR activity presented by the catalysts, which occurred preferentially via the two-electron pathway, was promoted by a combination of factors including geometry, Pd content, interparticle distance, and site-blocking effects, while the electrochemical stability of the catalysts may have been enhanced by the presence of MoOx.

5.
Environ Res ; 203: 111841, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34380049

RESUMEN

TiO2, ZnO, and SnO2 metal oxides were synthesized by the sol-gel method and heterojunctions were fabricated by combining TiO2 with either ZnO or SnO2 in a 1:1 ratio using mechanochemical ball milling process. The ball milling process promotes phase transition of TiO2 from anatase to rutile and yields ternary heterojunction of the type TiO2(A)/TiO2(R)/ZnO and TiO2(A)/TiO2(R)/SnO2 (A-anatase and R-rutile). These ternary heterojunctions were characterized by various analytical techniques and its photocatalytic efficiency is evaluated using 4-Chloro Phenol as a model compound under UV and solar light. The enhanced catalytic activity of TiO2(A)/TiO2(R)/ZnO heterojunction is attributed to the formation of Ti3+-Vo defect states which leads to the efficient charge carrier separation. During the ball milling process severe crystal deformation takes place in TiO2 and ZnO lattices by creating crystal lattice distortion which leads to the formation of defects due to valency mismatch between Ti4+ and Zn2+. A mechanistic pathway is proposed for the enhanced photocatalytic activity of the ternary heterojunctions.


Asunto(s)
Óxido de Zinc , Luz , Semiconductores , Titanio
7.
Chemosphere ; 265: 129052, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33246703

RESUMEN

The urea oxidation reaction (UOR) and nitrophenol reduction are safe and key limiting reactions for sustainable energy conversion and storage. Urea and nitrophenol are abundant in industrial and agricultural wastes, human wastewater, and in the environment. Catalytic oxidative and reductive removal is the most effective process to remove urea and 4-nitrophenol from the environment, necessary to protect human health. 2D carbon-supported, cobalt nanoparticle-based materials are emerging catalysts for nitrophenol reduction and as an anode material for the UOR. In this work, cobalt modified on a porous organic polymer (CoPOP) was synthesized and carbonized at 400 and 600 °C. The formation of CoPOP was confirmed by FT-IR spectroscopy, the 2D graphitic layer and amorphous carbon with cobalt metal by TEM, SEM, and PXRD, and the elemental composition by TEM mapping, EDX, and XPS. The catalytic activity for the 4-nitrophenol reduction was studied and the related electrocatalytic UOR was scientifically evaluated. The catalytic activity toward the reduction of 4-NP to 4-AP was tested with the addition of NaBH4; CoPOP-3 exhibited enhanced activity at a rate of 0.069 min-1. Furthermore, LSV investigated the catalytic activity of materials toward UOR, producing hydrogen gas, the products of which were analyzed via gas chromatography. Among the electrocatalysts studied, CoPOP-2 exhibited a lower onset potential, and the Tafel slope was 1.34 V and 80 mV dec-1. This study demonstrates that cobalt metal-doped porous organic polymers can be used as efficient catalysts to remove urea and nitrophenol from wastewater.


Asunto(s)
Cobalto , Polímeros , Humanos , Nitrofenoles , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Urea
8.
Int J Hydrogen Energy ; 45(53): 28217-28239, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-32863546

RESUMEN

Energy enthusiasts in developed countries explore sustainable and efficient pathways for accomplishing zero carbon footprint through the H2 economy. The major objective of the H2 economy review series is to bring out the status, major issues, and opportunities associated with the key components such as H2 production, storage, transportation, distribution, and applications in various energy sectors. Specifically, Part I discussed H2 production methods including the futuristic ones such as photoelectrochemical for small, medium, and large-scale applications, while Part II dealt with the challenges and developments in H2 storage, transportation, and distribution with national and international initiatives. Part III of the H2 economy review discusses the developments and challenges in the areas of H2 application in chemical/metallurgical industries, combustion, and fuel cells. Currently, the majority of H2 is being utilized by a few chemical industries with >60% in the oil refineries sector, by producing grey H2 by steam methane reforming on a large scale. In addition, the review also presents the challenges in various technologies for establishing greener and sustainable H2 society.

9.
ACS Appl Mater Interfaces ; 11(5): 4969-4982, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30624046

RESUMEN

Robust electrocatalysts toward the resourceful and sustainable generation of hydrogen by splitting of water via electrocatalytic hydrogen evolution reaction (HER) are a prerequisite to realize high-efficiency energy research. Highly electroactive catalysts for hydrogen production with ultralow loading of platinum (Pt) have been under exhaustive exploration to make them cutting-edge and cost-effectively reasonable for water splitting. Herein, we report the synthesis of hierarchically structured nickel pyrophosphate (ß-Ni2P2O7) by a precipitation method and nickel phosphate (Ni3(PO4)2) by two different synthetic routes, namely, simple cost-effective precipitation and solution combustion processes. Thereafter, Pt-decorated nickel pyrophosphate and nickel phosphate (ß-Ni2P2O7/Pt and Ni3(PO4)2/Pt) were prepared by using potassium hexachloroplatinate and ascorbic acid. The fabricated novel nickel pyrophosphate and nickel phosphate/Pt materials were utilized as potential and affordable electrocatalysts for HER by water splitting. The detailed electrochemical studies revealed that the ß-Ni2P2O7/Pt (1 µg·cm-2 Pt) electrocatalyst showed excellent electrocatalytic performances for HER in acidic solution with an overpotential of 28 mV at -10 mA·cm-2, a Tafel slope of 32 mV·dec, and an exchange current density ( j0) of -1.31 mA·cm-2, which were close to the values obtained using the Vulcan/Pt (8.0 µg·cm-2 Pt), commercial benchmarking electrocatalyst with eight times higher Pt amount. Furthermore, the ß-Ni2P2O7/Pt electrocatalyst maintains an excellent stability for over -0.1 V versus RHE for 12 days, keeping j0 equal after the stability test (-1.28 mA cm-2). Very well-distributed Pt NPs inside the "cages" on the ß-Ni2P2O7 structure with a crystalline pattern of 0.67 nm distance to the Ni2P2O7/Pt electrocatalyst, helping the Volmer-Tafel mechanism with the Tafel reaction as a major rate-limiting step, help to liberate very fast the Pt sites after HER. The high electrocatalytic performance and remarkable durability showed the ß-Ni2P2O7/Pt material to be a promising cost-effective electrocatalyst for hydrogen production.

10.
Nanoscale ; 7(14): 6193-207, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25776857

RESUMEN

This study investigated the synthesis of graphene oxide nanoribbons (GONRs) and graphene nanoribbons (GNRs) from multiwalled carbon nanotubes (MWCNTs), and the behavior of thin films of MWCNTs, GONRs, and GNRs on a glassy carbon surface in the presence of two redox probes (Fe(CN)6(3-)/Fe(CN)6(4-) and O2) employing cyclic voltammetry, electrochemical impedance spectroscopy, and hydrodynamic voltammetry (HV) as a simple procedure for characterizing these films. The feasibility of using these electrochemical techniques for this purpose opens up the possibility of applying them to biosensors and electrocatalysts using surface-supported MWCNT, GONR, and GNR materials. GNR1 resembles an internodal segment of bamboo cut lengthwise, with a shallow troughing at its center, while GNR2 resembles stacked ribbons, each ∼16 nm wide, with points of structural damage and points of four-ribbon connection measuring 60 nm or wider, sufficiently catalytic for the oxygen reduction reaction to occur, unlike the other modified electrodes investigated in acidic, 0.1 M KH2PO4 (pH 7.0), and 0.1 M KOH solutions (HV results). Transmission electron microscopy and thermogravimetric analysis were employed to characterize the MWCNTs, GONRs, and GNRs.

11.
Chemphyschem ; 14(5): 1043-54, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23420610

RESUMEN

An electrochemical study of Au electrodes electrografted with azobenzene (AB), Fast Garnet GBC (GBC) and Fast Black K (FBK) diazonium compounds is presented. Electrochemical quartz crystal microbalance, ellipsometry and atomic force microscopy investigations reveal the formation of multilayer films. The elemental composition of the aryl layers is examined by X-ray photoelectron spectroscopy. The electrochemical measurements reveal a quasi-reversible voltammogram of the Fe(CN)6 (3-/4-) redox couple on bare Au and a sigmoidal shape for the GBC- and FBK-modified Au electrodes, thus demonstrating that electron transfer is blocked due to the surface modification. The electrografted AB layer results in strongest inhibition of the Fe(CN)6 (3-/4-) response compared with other aryl layers. The same tendencies are observed for oxygen reduction; however, the blocking effect is not as strong as in the Fe(CN)6 (3-/4-) redox system. The electrochemical impedance spectroscopy measurements allowed the calculation of low charge-transfer rates to the Fe(CN)6 (3-) probe for the GBC- and FBK-modified Au electrodes in relation to bare Au. From these measurements it can be concluded that the FBK film is less compact or presents more pinholes than the electrografted GBC layer.

12.
J Hazard Mater ; 186(1): 645-50, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21145168

RESUMEN

Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed to study methamidophos (MAP) and humic acid (HM) specifically adsorbed onto Pt and PtO films in pH-7.0 universal buffer. The approach was found to be sufficiently selective for use in studies involving adsorption of species in environmental systems (e.g., soil minerals), typically evaluated by batch experiments and high performance liquid chromatography (HPLC) or gas chromatography (GC). The proposed method allowed quantification of active hydrogen adsorption sites blocked by HM, both when this compound is adsorbed alone or co-adsorbed with MAP. At higher amounts of MAP in the adsorption solution, the compound was co-adsorbed more effectively than HM (kept at constant concentration). In the case of sequential specific adsorption, the first compound adsorbed typically predominates over the second. EIS was more effective for determining the number of blocked active sites on Pt than CV, which was superior for PtO films.


Asunto(s)
Electroquímica/métodos , Sustancias Húmicas/análisis , Compuestos Organotiofosforados/análisis , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Adsorción , Cromatografía de Gases , Cromatografía Líquida de Alta Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...